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Abstract

This dynamic survey1 provides three parts:

1. a sketch of a few “Frontiers of Research” in oriented matroid theory,

2. an update of corrections, comments and progress as compared to [BLVS+99],
and

3. an extensive bibliography of oriented matroids, comprising and extending the
bibliography of [BLVS+99]. (We believe this bibliography is complete up to
1993.)

Mathematics Subject Classifications: 52-00 (52B05, 52B30, 52B35, 52B40)

1 Introduction(s).

Oriented matroids were first motivated by abstracting geometric situations. To quote
from [RGZ97]:

The theory of oriented matroids provides a broad setting in which to model,
describe, and analyze combinatorial properties of geometric configurations.
Mathematical objects of study that appear to be disjoint and independent,
such as point and vector configurations, hyperplane arrangements, convex
polytopes, directed graphs, and linear programming find a common gener-
alization in the language of oriented matroids.

Since that writing interest in oriented matroids has only expanded, both in their role in
modeling geometric objects and as intriguing objects in ther own right. The main parts of
the theory and some applications were compiled in 1993 in the comprehensive monograph
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by Björner, Las Vergnas, Sturmfels, White & Ziegler [BLVS+99]. For other (shorter)
introductions and surveys, see Bachem & Kern [BK92a], Bokowski & Sturmfels [BS89a],
Bokowski [Bok93], Goodman & Pollack [GP93], Ziegler [Zie95, Chapters 6 and 7], and
Richter-Gebert & Ziegler’s handbook article [RGZ97], updated in [TGO17].

After a brief explanation of what an oriented matroid is, this dynamic survey provides
three parts:

1. a sketch of a few “Frontiers of Research” in oriented matroid theory,

2. an update of corrections, comments and progress as compared to [BLVS+99], and

3. an extensive bibliography of oriented matroids, comprising and extending the bib-
liography of [BLVS+99]. (We believe this bibliography is complete up to 1993.)

2 What is an Oriented Matroid?

2.1 Motivation

Let V = (v1, v2, . . . , vn) be a finite spanning sequence of vectors in Rr, that is, a finite
vector configuration. One can associate to V the following types of data, each of them
encoding the combinatorial structure of V .

• The chirotope of V is the map

χ
V

: {1, 2, . . . , n}r −→ {+,−, 0}
(i1, i2, . . . , ir) 7−→ sign(det(vi1 , vi2 , . . . , vir))

that records for each r-tuple of the vectors whether it forms a positively oriented
basis of Rr, a basis with negative orientation, or not a basis.

• The set of covectors of V is

V∗(V ) :=
{(

sign(atv1), . . . , sign(atvn)
)
∈ {+,−, 0}n : a ∈ Rr

}
,

that is, the set of all partitions of V (into three parts) induced by hyperplanes
through the origin. It is also denoted as L sometimes, see below.

• The set of signed cocircuits of V is

C∗(V ) :=
{(

sign(atv1), . . . , sign(atvn)
)
∈ {+,−, 0}n : a ∈ Rn is orthogonal to a

hyperplane spanned by vectors in V
}
,

of all partitions by “special” hyperplanes that are spanned by vectors of the config-
uration V .

• The set of vectors of V is

V(V ) :=
{(

sign(λ1), . . . , sign(λn)
)
∈ {+,−, 0}n : λ1v1 + . . . + λnvn = 0 is a

linear dependence between vectors in V
}
.
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• The set of signed circuits is

C(V ) :=
{(

sign(λ1), . . . , sign(λn)
)
∈ {+,−, 0}n : λ1v1 + . . . + λnvn = 0 is a

minimal linear dependence between vectors in V
}
.

It is not hard to see that all of these sets of data are equivalent, except for a global sign
change that identifies χ with −χ. That is, whenever one of the data

{χ
V
,−χ

V
}, V∗(V ), C∗(V ), V(V ), or C(V )

is given, one can from this uniquely reconstruct all the others.

Vector configurations as discussed above give rise to oriented matroids of rank r on
n elements (or: on a ground set of size n). Usually the ground set is identified with
E = {1, 2, . . . , n}.

Equivalent to vector configurations, one has the model of (real, linear, essential,
oriented) hyperplane arrangements: finite collections A := (H1, H2, . . . , Hn) of hyper-
planes (linear subspaces of codimension one) in Rr, with the extra requirement that
H1 ∩ . . . ∩ Hn = {0}, and with a choice of a positive halfspace H+

i for each of the
hyperplanes. In fact, every vector configuration gives rise to such an arrangement via
H+

i := {x ∈ Rr : vtix ⩾ 0}, and from an oriented hyperplane arrangement we recover a
vector configuration by taking the positive unit normals. The set of covectors is the most
interesting data set for this model. For each x ∈ Rr we define a vector s(x) ∈ {0,+,−}n,
where s(x)i is + if x is on the positive side of Hi, − if x is on the negative side of Hi, and
0 if x ∈ Hi. Then the range of s is the covector set of the oriented matroid associated to
the arrangement.

Yet another route to oriented matroids comes via linear subspaces of Rn. If V is
such a subspace, then {sign(x) : x ∈ V } is the set of covectors of an oriented matroid.
Another way to describe this oriented matroid is as arising from the oriented hyperplane
arrangement in V whose elements are the intersections of the coordinate hyperplanes
in Rn with V . Equivalently, the oriented matroid arises from the vector arrangement
consisting of the orthogonal projections of the coordinate vectors onto V . Interpreting
the covector set as {sign(x) : x ∈ V } suggests the outsize role of covectors in oriented
matroid theory. For instance, consider the unit sphere in V and its decomposition into
cells given by the coordinate hyperplanes; these cells correspond exactly to the nonzero
covectors. This is one reason to use the notation L for the covector set: in the case of
an oriented matroid arising from a subspace of Rn, L ∪ {1̂} is clearly the face lattice of
a regular cell decomposition of the unit sphere in that subspace, and even for general
oriented matroids L ∪ {1̂} is the face lattice of a regular cell decomposition of a sphere.
(This is one part of the Topological Representation Theorem described in Section 2.2.)

More specialized, one has the model of directed graphs: if D = (V,A) is a finite directed
graph (with vertex set V = {0, 1, 2, . . . , r} and arc set A = {a1, . . . , an} ⊆ V 2), then one
has the obvious “directed circuits” in the digraph that give rise to circuits in the sense of
sign vectors in C(V ) ⊆ {+,−, 0}n, while directed cuts give rise to covectors, and minimal
directed cuts give rise to cocircuits. Thus one obtains the oriented matroid of a digraph,
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which can also, equivalently, be constructed by associating with each arc (i, j) the vector
ei−ej ∈ Rr, where we take ei to be the i-th coordinate vector in Rr for i ⩾ 1, and e0 := 0.

2.2 Abstraction

The examples of the previous section motivate combinatorial definitions of abstract chi-
rotopes, circuits, and vectors (cf. [BLVS+99] Chapter 2). As in the case of data arising
from vector arrangements, these data types are equivalent: a pair ±χ of rank r chiro-
topes determines a rank r signed circuit set, and so forth. Thus there are combinatorial
structures, called oriented matroids, that can equivalently be given by any of these five
different sets of data, and defined/characterized in terms of any of the five corresponding
axiom systems. (The proofs for the equivalences between these data sets resp. axiom
systems are not simple.)

Although the axiom systems of oriented matroids describe the data arising from vector
configurations very well, it is not true that every oriented matroid corresponds to a real
vector configuration. In other words, there are oriented matroids that are not realizable.
This points to some basic theorems and a few of the fundamental problems in oriented
matroid theory:

• The Topological Representation Theorem (see [BLVS+99, Chap. 5]) shows that, just
as a real hyperplane arrangement in Rr can be represented by an arrangement of
equators in Sr−1, every rank r oriented matroid can be represented by an arrange-
ment of “pseudo-equators” in Sr−1. (The term used for these “pseudo-equators” is
pseudospheres: note that the meaning of this term in oriented matroids is different
from that in other fields.)

• There is no finite set of axioms that would characterize the oriented matroids that
are representable by vector configurations. In fact, even for r = 3 there are oriented
matroids on n elements that are minimally non-realizable for arbitrarily large n.
See [Vam78] and Section 8.3 of [BLVS+99] for details.

• The realization problem is a difficult algorithmic task: for a given oriented matroid,
to decide whether it is realizable, and possibly find a realization. This statement is a
by-product of the constructions for the Universality Theorem for oriented matroids,
see below.

2.3 Maps of oriented matroids

There are two notions of maps of oriented matroids.
We say there is a strong map from an oriented matroid M to an oriented matroid N if

every covector of N is a covector of M . (In particular, M and N are oriented matroids on
the same ground set E. This is a departure from ordinary matroid theory, which involves
a set map from the elements of M to the elements of N : in oriented matroid theory we
assume this map to be the identity.) In this situation we also say that N is a quotient
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of M . (In work of Las Vergnas quotients are also called perspectives.) For each of our
geometric motivating objects, we have a motivation for strong maps:

• If M arises from a sequence (v1, . . . , vn) of vectors then the oriented matroid of the
image (f(v1), . . . , f(vn)) under a linear map is a quotient of M .

• If M arises from a sequence (H1, . . . , Hn) of oriented hyperplanes in a vector space
V and W is a linear subspace of V then the oriented matroid associated to the
sequence (H1 ∩W, . . . , Hn ∩W ) of oriented hyperplanes in W is a quotient of M .

• If M arises from a subspace V of Rn and W is a linear subspace of V then the
oriented matroid associated to W is a quotient of M .

We say there is a weak map from an oriented matroid M to an oriented matroid N if
every covector of N is obtained from a covector of M by changing some (possibly none)
nonzero components to 0. The interpretation of weak map in each of our motivating
examples is about moving into more special position: if the geometric object associated
to N can be perturbed slightly to give a geometric object associated to M then there is
a weak map from M to N . This motivation leads to a combinatorial notion of spaces of
oriented matroids: see Sections 3.2 and 3.3

The Topological Representation Theorem tells us that to each oriented matroid M
there is an associated simplicial sphere, the order complex of the poset V ∗(M)\{0}. This
gives a contravariant functor from the category of oriented matroids and strong maps
to the category of simplicial spheres and simplicial maps. We can also associate to a
weak map from M to N a map of simplicial spheres, but this association is not functorial
[And01].

3 Some Frontiers of Research.

Among current areas of research are several deep problems of oriented matroid theory
that were thought to be both hard and fundamental, and are now gradually turning out
to be just that.

Here we give sketches and pointers to the literature for just a few topics. (The selection
is very much biased. We plan to expand and update regularly. Your help and comments
are essential for that.)

3.1 Realization spaces.

Mnëv’s Universality Theorem of 1988 [Mnë88] states that every primary semialgebraic set
defined over Z is “stably equivalent” to the realization space of some oriented matroid of
rank 3. In other words, the semialgebraic sets of the form

R(X) := {Y ∈ R3×n : sign(det(Xi,j,k)) = sign(det(Yi,j,k)) for all 1 ⩽ i < j < k ⩽ n},

for real matrices X ∈ R3×n, can be arbitrarily complicated, both in their topological
and their arithmetic properties. The Universal Partition Theorem [Mnë91], announced in
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1991, says that essentially every semialgebraic family appears in the stratification given
by the determinant function on the (3× 3)-minors of (3× n)-matrices.

These results are fundamental and far-reaching. For example, via oriented matroid
(Gale) duality they imply universality theorems for d-polytopes with d+4 vertices (cf.
Chapter 6 of [Zie95]).

Mnëv’s original proof of Universality was simplified greatly by Shor [Sho91], see also
Richter-Gebert [RG95b]. The Universal Partition Theorem got its first complete proof by
Günzel [Gün96] (in a weakened form) and by Richter-Gebert [RG95b].

Stable equivalence is a special kind of homotopy equivalence that in some sense pre-
serves algebraic complexity. There are several vague or incomplete definitions of sta-
ble equivalence in the literature: we give a complete definition here, with thanks to
Boege [Boe] and Verkama [Ver23] for elucidating the issues. Let V and W be semialge-
braic sets. A rational equivalence from V to W is a function f : V → W such that both
f and f−1 are rational functions with rational coefficients. If V ⊆ Rn+m and W ⊆ Rn is
the projection of V to its first n coordinates, we say that the projection π : V → W is a
stable projection if the following conditions are satisfied.

1. There are finite sets of polynomials {Φi : i ∈ I}, {Ψj : j ∈ J} ⊂ Q[w, v] such that
each polynomial has degree 1 in variables v and

V = {(w, v) : w ∈ W,∀i Φi(w, v) > 0, ∀j Ψj(w, v) = 0}.

2. π is a homotopy equivalence

The condition that π is a homotopy equivalence is satisfied, for instance, if π has a
global section σ. In this case V retracts to σ(W ) by a fibrewise straight-line homotopy.
Stable equivalence is the equivalence relation on semialgebraic sets generated by rational
equivalence and stable projection.

Both the statement and proof techniques of the Universality Theorem have led to
universality theorems for other moduli spaces. Richter-Gebert has proved a Universality
Theorem (and Universal Partition Theorem) for 4-dimensional polytopes, and related to
this a non-Steinitz theorem for 3-spheres [RGZ95a, RGZ95b]. See [Gün98] for a second
proof. Kapovich & Millson [KM02] proved a Universality Theorem for configuration
spaces of planar polygons. (Kapovich & Millson trace the history of their result back to a
universality theorem by Kempe [Kem75] from 1875!) Lafforgue [Laf03] proved a scheme-
theoretic version of the oriented Universality, which was the basis for a wide-ranging
paper by Vakil [Vak06] on “Murphy’s Law in algebraic geometry”. Dobbins, Holmsen
and Hubard [DHH17] generalized rank 3 chirotopes to a notion of order type of a family
of convex bodies in the plane, and they showed that, for each fixed k ⩾ 3, every primary
semialgebraic set is stably equivalent to the space of realizations of an order type by
k-gons in the plane.

Here are some major challenges that remain in this area:

• To construct and understand the smallest oriented matroids with non-trivial re-
alization spaces. The smallest known examples are Tsukamoto’s [Tsu13] oriented
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matroids of rank 3 on 13 points with a disconnected realization space (Tsukamoto
produces two such oriented matroids, differing in a single basis.) The smallest known
uniform example is Suvorov’s [Suv88] oriented matroid of rank 3 on 14 points, also
with a disconnected realization space (see also [BLVS+99, p. 365]). Another interest-
ing example is Richter-Gebert’s [RG96b] non-uniform Ω+

14 with the same parameters,
which additionally has rational realizations and a non-realizable symmetry.

• To provide Universality Theorems for simplicial 4-dimensional polytopes. (The
Bokowski-Ewald-Kleinschmidt polytope [BEK84] is still the only simplicial example
known with a non-trivial realization space; see also Bokowski & Guedes de Oliveira
[BGdO90].)

• What is the topology of the space of all pseudosphere realizations of a fixed oriented
matroid? In ranks 1 and 2 this space coincides with the realization space, and in
rank 3 Dobbins [Dob21] has shown this space to be contractible, via a difficult proof
using methods specific to this rank.

3.2 Extension spaces and liftings

Consider an an oriented matroid M on elements E. A nontrivial single-element extension
of M is an oriented matroid M ′ on elements E ∪ {p} of the same rank as M such that
the deletion M ′\p is M . A nontrivial single-element lifting of M is an oriented matroid
M ′′ on elements E ∪ {p} such that p is a nonloop and the contraction M ′′/p is M .

Lifting and extensions are dual concepts: M ′ is a nontrivial single element extension
of M exactly when (M ′)∗ is a nontrivial single-element lifting of M∗.

3.2.1 The Bohne-Dress Theorem

The Bohne-Dress Theorem, announced by Andreas Dress at the 1989 “Combinatorics and
Geometry” Conference in Stockholm, provides a bijection between the zonotopal tilings of
a fixed d-dimensional zonotope Z and the single-element liftings of the realizable oriented
matroid associated with Z. This theorem turned out to be, at the same time,

• fundamental (see e. g. the connection to extension spaces of oriented
matroids [SZ93]),

• “intuitively obvious” (just draw pictures!), and

• surprisingly hard to prove; see Bohne [Boh92a] and Richter-Gebert & Ziegler
[RGZ94].

A substantially different proof of the Bohne-Dress theorem was given by Huber, Rambau
& Santos [HRS00]. In particular, there are bijections{

zonotopal tilings of
the zonotope Z(A)

}
↔

{
subdivisions of the

Lawrence polytope Λ(A)

}
↔

{
extensions of the dual

oriented matroid M∗(A)

}
The first bijection follows from the “Cayley trick”, see Huber, Rambau & Santos [HRS00].
The second, more difficult one was already before established by Santos [San02,HRS00].
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A separate, simpler proof for the case of rank 3 — pseudoline arrangements are in
bijection with zonotopal tilings of a centrally symmetric 2n-gon — is contained in the
work by Felsner & Weil [FW01].

The Bohne-Dress theorem provides a connection to several other areas of study. On
the one hand, the classification and enumeration of rhombic tilings of a hexagon relates
to the theory of plane partitions and symmetric functions; see e.g. Elnitsky [Eln93],
Edelman & Reiner [ER96a].

On the other hand, there is a definite need for a better understanding of zonotopal
tilings of the entire plane (or of Rd). Two different approaches have been started by
Bohne [Boh92b, Kapitel 5] and by Crapo & Senechal [CS97], but no complete picture has
emerged, yet. This is of interest, for example, in view of the mathematical problems posed
by understanding quasiperiodic tilings and quasicrystals; see Senechal [Sen90,Sen95].

Motivated by ideas of Leclerc and Zelevinsky [LZ98], the Bohne-Dress Theorem has
been specialized to a bijection between maximal by size M-separated collections and fine
zonotopal tiling by Galashin and Postnikov [GP23].

3.2.2 The Extension Space Conjecture is false.

The extension space is the order complex of the poset E(M) of nontrivial single-element
extensions of M by a nonloop, ordered by weak maps. Much research for many years
focused on the Extension Space Conjecture, which stated that if M is realizable and rank
r then this order complex is homotopy equivalent to an (r − 1)-sphere. (A standard
abuse of notation is to refer to the topology of a poset when we mean the topology of
its order complex: thus the conjecture is stated as “E(M) is homotopy equivalent to an
(r − 1)-sphere”.)

If we fix a realization of M as a vector arrangement, then it’s not hard to see that
the subposet of E(M) arising from extensions of this arrangement is homeomorphic to
an (r − 1)-sphere. It’s also not hard to see that this subposet may not be all of E(M).
Nonetheless, the Extension Space Conjecture “feels right”, and Sturmfels and Ziegler
[SZ93] proved the Extension Space Conjecture for oriented matroids of rank at most 3
or corank at most 2 in 1993. Only in 2016 was the general Extension Space Conjecture
disproved by Liu [Liu20]. His proof is probabilistic: he gives a randomized process to

produce a rank 3 vector arrangement ẼN on 6N elements, and he proves that, for large
enough N , with probability greater than 0, ẼN contains a subconfiguration E such that
the oriented matroid dual to the oriented matroid of E has disconnected extension space.
(This oriented matroid with disconnected extension space has corank 3.)

Mnëv and Richter-Gebert [MRG93] gave examples of non-realizable rank 4 oriented
matroids with disconnected extension space.

The Bohne-Dress Theorem allows us to identify E(M) with a Baues poset ω(Cn →
Z), where Cn is the cube whose dimension is the number of elements of M and Z is
the zonotope given by a realization of M . Thus as a corollary of Liu’s result we get a
counterexample to “the Generalized Baues Conjecture for cubes”.

It would be interesting to have a better understanding of the subposet of E(M) arising
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from a realization of M . For instance, do different realizations always correspond to iso-
topic subposets of E(M)? It would also be interesting to have an explicit counterexample
to the Extension Space Conjecture — not just an existence proof — and to know more
about the smallest rank and corank in which counterexamples occur.

3.3 Combinatorial Grassmannians and flag posets

The consideration of spaces of oriented matroids brings several very different lines of
thinking into a common topological framework. Given a set S of oriented matroids, we
obtain a partial order on S by weak maps, and from this we obtain a topological space,
the order complex ∆S (the simplicial complex given by chains in the partial order; see
Björner [Bjö95]). This simplicial complex can be viewed as a combinatorial analog to a
vector bundle. Just as a vector bundle represents a continuous parametrization of a set
of vector spaces, this topological space can be viewed as a “continuous” parametrization
of elements of S. Such spaces have arisen in several contexts.

• We’ve already seen the extension space ∆E(M) of M .

• If S is the set MacP(r, n) of all rank r oriented matroids on a fixed set of n elements,
this space is the MacPhersonian.

• If S is the set G(r,M) of all rank r quotients of a fixed oriented matroid M , this space
is the combinatorial Grassmannian. (In fact, this example essentially encompasses
the previous two: The extension space ∆E(M) of a oriented matroid M is a double
cover of ∆G(rank(M)− 1,M), while if M is the unique rank n oriented matroid on
a fixed set of n elements, then G(r,M) = MacP(r, n).)

• More generally, if 1 ⩽ r1 < · · · < rk is a sequence of integers, an (r1, . . . , rk)-flag
of oriented matroids is a sequence M1 ← · · · ←Mk of oriented matroids and strong
maps in which each Mi has rank ri. If rk ⩽ rank(M) and S is the set G(r1, . . . , rk,M)
of all (r1, . . . , rk)-flags M1 ← · · · ←Mk ←M then this space is the (r1, . . . , rk)-flag
space.

The Topological Representation Theorem tells us that the combinatorial Grassman-
nian G(1,M) associated to a rank r oriented matroid M is homeomorphic to G(1,Rr).
(Here G(r1, . . . , rk,Rr) denotes the space of flags V1 ⊂ · · · ⊂ Vk of linear subspaces of
Rr, with each Vi of dimension i.) When k > 1 then G(k,M) need not have the same
dimension as G(k,Rr). Babson [Bab94] showed that G(2,M) and G(1, 2,M) are homo-
topy equivalent to G(2,Rr) and G(1, 2,Rr). A realization of a rank r oriented matroid
M leads to a continuous map of flag spaces c : G(r1, . . . , rk,Rr) → ∆G(r1, . . . , rk,M),
well-defined up to homotopy. When (r1, . . . , rk) ∈ {(1), (2), (1, 2)} then this map is a
homotopy equivalence. However, in general things are not so well-behaved: the examples
in Section 3.2.2 also have disconnected G(r − 1,M). Thus there are rank 4 nonrealizable
M and high-rank realizable M with disconnected combinatorial Grassmannians.

The main open conjecture is that the maps c : G(r,Rn) → ∆ MacP(r, n) are ho-
motopy equivalences. A paper asserting a proof of this conjecture was withdrawn in
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2009 [Bis03], [Bis09]. There are substantial grounds for pessimism. Mnëv’s Universal-
ity Theorem implies that for realizable M ∈ MacP(r, n) the inverse images under c can
have arbitrarily complicated topology. Also, for large n almost all elements of MacP(r, n)
are nonrealizable, and so the image of c is a small subset of ∆ MacP(r, n). However,
substantial progress has been made on the first few homotopy groups of the MacPher-
sonian (Anderson [And98]), for mod 2 cohomology (Anderson & Davis [AD02]), and for
r = 3 (Dobbins [Dob21]). Three related survey articles are Mnëv & Ziegler [MZ93],
Anderson [And99a], and Reiner [Rei99].

The MacPhersonian and combinatorial flag spaces arise in MacPherson’s theory of
combinatorial differential manifolds and matroid bundles [Mac93], [And99a] in which ori-
ented matroids serve as combinatorial analogs to real vector spaces. This analogy leads
to an intriguing and useful interplay between topology and combinatorics. On the one
hand, appropriate combinatorial adaptations of classical topological methods for real vec-
tor bundles prove that for realizable Mn the map c : G(k,Rn) → G(k,Mn) induces split
surjections in mod 2 cohomology [AD02]. On the other hand, combinatorial methods can
be applied to topology as well. Any real vector bundle over a triangulated base space
can be “combinatorialized” into a matroid bundle [Mac93] [AD02], giving a combinato-
rial approach to the study of bundles. The most notable success in this direction has
been Gel’fand & MacPherson’s [GM92] combinatorial formula for the rational Pontrjagin
classes of a triangulated differential manifold. The paper [GM92] omits many proofs:
Abawonse and Anderson [AA] gave a more detailed account.

The topological problems discussed in this section have close connections to classical
problems of oriented matroid theory, such as the following: Las Vergnas’ conjectures that
every oriented matroid has at least one mutation (simplicial tope) and that the set of
uniform oriented matroids of rank r on a given finite set is connected under performing
mutations, see Subsection 3.7.1. In fact, if these conjectures are false, then the “top level”
of the MacPhersonian, given by all oriented matroids without circuits of size smaller than
r and at most one circuit of size r, cannot be connected.

Another conjecture of Las Vergnas says that every strong map can be factored as
an extension followed by a contraction. As a motivating example, if M arises from a
hyperplane arrangement and N arises from the intersection of that arrangement with a
subspace V , then an appropriate extension would be by a collection of hyperplanes whose
intersection is V . Despite its plausibility, the conjecture is false: it was first disproved
by Richter-Gebert [RG93d], and more recently Wu has found a realizable counterexam-
ple [Wu21a].

An equivalent formulation of Las Vergnas’s conjecture is that every strong map M →
N can be interpolated to a flag M = M r →M r−1 → . . .→M s = N , where each M i has
rank i. Thus the results of Richter-Gebert and Wu on Las Vergnas’s conjecture are also
results on flag posets: they show that the projection G(2, 3,M) → G(2,M) need not be
surjective. See [Wu21a] for further discussion.
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3.4 Realization algorithms.

The realizability problem — given a “small” oriented matroid, find a realization or prove
that none exists — is a key problem not only in oriented matroid theory, but also for
various applications, such as the classification of “small” simplicial spheres into polytopal
and non-polytopal ones (see Bokowski & Sturmfels [BS87b,BS89a], Altshuler, Bokowski &
Steinberg [ABS80], Bokowski & Shemer [BS87a]). The universality theorems mentioned
above tell us that the problem is hard: in fact, in terms of Complexity Theory it is just
as hard as the “Existential Theory of the Reals (ETR),” the problem of solving general
systems of algebraic equations and inequalities over the reals [Sho91]. While it is not
known whether ETR over Q is at all algorithmically solvable (see Sturmfels [Stu87e]),
there are algorithms available that (at least theoretically) solve ETR over the reals. In
general one has NP⊆ETR⊆PSACE, i.e., these problems can be solved with polynomial
space. More precisely, for ETR Basu, Pollack & Roy [BPR98] currently have the best
result:

Let P = {P1, . . . , Ps} be a set of polynomials in k < s variables each of degree at
most d and each with coefficients in a subfield K ⊆ R.
There is an algorithm which finds a solution in each connected component of
the solution set, for each sign condition on P1, . . . , Ps, in at most

(
O(s)
k

)
s dO(k) =

(s/k)ks dO(k) arithmetic operations in K.

However, until now this is mostly of theoretical value. See the Matoušek’s expository
paper [Mat14] for more on the topic. What can be done for specific, explicit, small
examples? Given an oriented matroid, it seems that

• one efficient algorithm (in practice) currently available to find a realization (if one
exists) is the iterative “rubber band” algorithm described in Pock [Poc91] for the
rank 3 case. Further, Firsching [Fir17] demonstrated that current nonlinear op-
timization software can be used very efficiently to find realizations. Randomized
methods can be used to find realizations, but it seems hard to employ them for
nonuniform oriented matroids: see Fukuda, Miyata and Moriyama [FMM13].

• the most efficient criterion (in practice) currently available to certify/verify non-
realizability is the “bi-quadratic final polynomials” algorithm of Bokowski & Richter-
Gebert [BR90b] which uses solutions of an auxiliary linear program to con-
struct final polynomials. Note that here bi-quadratic is essential, because by the
above [BPR98], there always exists a final polynomial which however is computation-
ally infeasible to find. Another method for finding certificates for non-realizability
is based on semidefinite programming was analyzed by Miyata, Moriyama, and
Imai [MMI09b, MMI09a] and also applied for some examples of higher rank, but
seems to be dominated by bi-quadratic final polynomials: see [FMM13].

Neither of these is guaranteed to work: but still the combination of all three parts was
good enough for a (still unpublished) complete classification of all 312,356 (unlabeled re-
orientation classes of) uniform oriented matroids of rank 3 on 10 points into realizable and
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non-realizable ones (Bokowski, Laffaille & Richter-Gebert [BK92b]). This was extended
to n = 11 by Aichholzer, Aurenhammer, and Krasser [AAK02, AK07] using simulated
annealing and bi-quadratic final polynomials. Indeed, all non-realizable uniform oriented
matroids rank 3 on up to 11 elements can be shown to be such using bi-quadratic fi-
nal polynomials. An explicit example of a non-realizable oriented matroid Ω−

14 without
a bi-quadratic final polynomial was constructed by Richter-Gebert [RG96b], and one on
12 points has been announced by Scheucher. Fukuda, Miyata, and Moriyama [FMM13]
combine the above methods with some ad hoc computations to enumerate the realizable
(non-uniform) oriented matroids of rank 3 on 9 elements and of rank 4 on 10 elements.
Another idea is to encode oriented matroids as solutions to a satisfiability problem and
then use SAT solvers. The first use of this idea is due to Schewe [Sch10]. One way is to
code the single elements extensions of an oriented matroids as solutions of a satisfiability
problem. However, perhaps the most straightforward method is to encode the chirotope
axioms as a satisfiability problem: see [Sch21] for the acyclic case. Finally, we mention
the work of Finschi and Fukuda [FF03] enumerating simple (uniform) oriented matroids;
the data (still being maintained) can be found on the Homepage of Oriented Matroids.

Enumeration of special oriented matroids called oriented matroid polytopes is usu-
ally the first step for the enumeration of polytopal spheres. Pfeifle [Pfe24] has used a
polymake implementation of a search algorithm to disprove the realizability of a bal-
anced 2-neighborly 3-sphere constructed by Zheng [Zhe20], a family of highly neighborly
centrally symmetric spheres constructed by by Novik and Zheng [NZ24], and several com-
binatorial prismatoids introduced by Criado and Santos [CS17]. The algorithm looks for
positive monomial combinations of Plücker polynomials which vanish in any realization,
thus creating a contradiction to realizability. Further results concerning (neighborly) ori-
ented matroid polytopes can also be found in [RGZ97, Chapter 6.4] and [MP15,Pad13].

A very closely related topic is that of Automatic Theorem Proving in (plane) geometry.
In fact, the question of validity of a certain incidence theorem can be viewed as the
realizability problem for (oriented or unoriented) matroids of the configuration. Richter-
Gebert [RG91] and Wu [Wu94] here present two (distinct) views of the topic, both with
many of its ramifications.

Closing this section let us note that the paper [Hui86] is a joke by Goodman and
Pollack, a fake paper that never existed (and an algorithm as announced in the title does
not exist). Indeed the last name of the author means “cheater” in Finnish.

3.5 Positroids

A surprising interplay between oriented matroids, physics, and algebra has emerged, in
the form or positroids. A positroid, or positively oriented matroid, is an oriented matroid
on [n] with a chirotope whose value on every increasing sequence is nonnegative. In
particular, positroids can be considered ordered oriented matroids. Ardila, Rincón, and
Williams [ARW17] showed that all positroids are realizable, thus confirming a conjecture
of da Silva [dS87a]. In fact, the realization space of a positively oriented matroid is always
a ball. Boretsky, Eur and Williams [BEW22] strengthened the result of [ARW17] by
showing that every flag consisting of positroids of consecutive ranks is positively realizable.
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This remains open for general flags. Positroids also came up in relation to semigroup
rings [Blu01], and an unpublished work of Postnikov [Pos06] gives descriptions in terms
of decorated permutations and plabic graphs. The connection to physics comes by way of
scattering amplitudes and the amplituhedron (cf. [AHBC+16]). For a detailed account of
this rapidly emerging field, we refer the reader to Williams’s excellent survey article [Wil].

3.6 The Tutte polynomial

The Tutte polynomial TM(x, y) of an ordinary matroid M has additional context and
interpretation if M is the underlying matroid of an oriented matroid M . Notably, TM(2, 0)
counts the number of regions in an arrangement representing M . When the ground set
is linearly ordered, the central description is in terms of orientation-activities [LV84c],
counting the number of smallest elements of circuits and cocircuits and yielding geometric
interpretations for the coefficients of the Tutte polynomial. The question of relating these
parameters to basis-activities of ordinary matroids was raised by Las Vergnas in [LV84c]
and answered in a series of papers by Gioan and Las Vergnas on the so-called active
bijection, initiated in [Gio02].

A central concept is that of active partition of the ground set associated with any
ordered oriented matroid, yielding a canonical decomposition into bounded minors, and
yielding activity classes which form a partition of the set of reorientations into boolean
lattices. Enumerative counterparts yield Tutte polynomial interpretations, like evalua-
tions counting various types of reorientations, or like a formula in terms of β-invariants
of minors, or a 4-variable expansion formula, see [GLV18b, GLV19]. The active bijec-
tion of an ordered oriented matroid relates bases and reorientations and involves three
levels: the bounded level where each bounded region is associated with its unique fully
optimal basis, a concept that strengthens oriented matroid (linear) programming opti-
mality [GLV09b];the central level where activity classes correspond to bases in an activity
preserving and canonical way; and the refined level which yields various bijections, such
as a bijection between regions and no-broken-circuit subsets [GLV18b].

If M is regular, then some evaluations of the Tutte polynomial count circuit-cocircuit
reversal classes of reorientations [Gio08,GY19], which in particular can be interpreted if M
is graphic [Gio07,CYZ08]. Bijections and interpretations involving these classes, Ehrhart
theory and further objects were developed in [BBY19]. These bijections can be somehow
extended to general oriented matroids in terms of extension-lifting constructions, where
they can also be seen as a particular case of the bounded level of the active bijection
[BSY19,BSY23].

One of the central conjectures related to the Tutte polynomial of matroids is the
Merino-Welsh conjecture, stating that max(TM(0, 2), TM(2, 0)) ⩾ TM(1, 1), originally for
graphic matroids only [MW99]. If M is orientable then TM(0, 2) and TM(2, 0) count the
regions in arrangements representing M and M∗. There was hope that this could be used
to approach the Merino-Welsh conjecture. However, the conjecture was disproved also for
orientable matroids [BCCP23]: the counterexamples are large enough uniform matroids
in which every element is doubled with a parallel element. In the graphic setting, the
problem remains open for sparse graphs [Tho10].
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See the survey [Gio22b] for further details, problems and references.

3.7 Special cells and associated graphs

3.7.1 Topes

In a simple oriented matroid M , the topes are the covectors without 0-entries. They cor-
respond to maximal cells in a topological representation, and they determine M uniquely.
Axiomatizations in terms of topes are known due to Handa [Han90] and da Silva [dS95].
Viewing the topes as a set of vertices of the hypercube allows for interesting links to set
systems. For instance, the rank coincides with the VC-dimension, and questions about
sample-compression can be studied. This extends to the broader setting of complexes of
oriented matroids. Hence, we explain them in Subsection 3.8.1.

Simplicial cells and the mutation graph A maximal cell in an arrangement rep-
resenting a rank r oriented matroid must have at least r sides: we call a maximal cell
simplicial if it has exactly r sides. Las Vergnas’ simplex conjecture [LV80a] says that
every oriented matroid has a simplicial cell. Up to today the conjecture is known to hold
for realizable oriented matroids [Sha79], oriented matroids of rank at most 3 [Lev26],
small rank 4 oriented matroids [BR01], rank 4 uniform matroid polytopes [Miy20], and
for Euclidean oriented matroids and oriented matroids that have a general-position ex-
tension yielding a Euclidean affine oriented matroid [Man82, Theorem 7]. Indeed, the
latter is the largest class of oriented matroids (of unbounded rank) known to satisfy Las
Vergnas’ simplex conjecture. This led Mandel to the “wishful thinking conjecture” that
all oriented matroids are of this type [Man82, Conjecture 8]. Mandel’s conjecture has been
disproved [KM23a] by showing that in such oriented matroids every element is incident
to a simplicial cell. There are examples of uniform oriented matroids of rank 4 violating
this property on 21 [RG93d], 17 [BR01], and 13 [TH04] elements, respectively.

If an oriented matroid has a simplicial cell, then one can understand combinatorially
what it means to transform the arrangement by pulling one pseudosphere bounding the
simplicial cell over its opposite vertex. It is equivalent to changing the sign of the chirotope
corresponding to the cell; this operation is often called a mutation. Las Vergnas’s simplex
conjecture can be restated as saying that the mutation graph on all oriented matroids of
fixed rank on elements E has no vertices of degree 0. Cordovil and Las Vergnas [RS88]
conjectured further that for all r, n the mutation graph on the set of uniform oriented
matroids on elements E and rank r is connected. This would imply that any two uniform
oriented matroids of the same rank and on the same elements have topological representa-
tions that can be transformed into each other by a sequence of these “pulling” operations.

By Ringel’s Homotopy Theorem [Rin56, Rin57] Cordovil-Las Vergnas’s conjecture
holds for rank at most 3. Also, in all ranks the induced subgraph defined by realiz-
able uniform oriented matroids is connected [RS88]. The conjecture has been verified for
n ⩽ 9 in [KM23a]. Based on polynomials associated to an oriented matroid, Lawrence
studied properties of mutation sequences transforming one oriented matroid into another
if they exist: see [Law00,Law09].
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Complete cells A maximal cell is complete if it is bounded by all the pseudospheres
in the arrangement. In [Rou91] Roudneff conjectured that an oriented matroid of rank
r and n ⩾ 2r − 1 elements has at most 2

∑r−3
i=0

(
n−1
i

)
complete cells. This bound is

attained by the alternating matroid, the dual of the point matroid of the cyclic polytope.
It further has been asked if also for r ⩽ n ⩽ 2r−2 the alternating matroid maximizes the
number of complete cells [MR15], which was computed in [FR01]. To prove Roudneff’s
conjecture for a given r it suffices to do so for n = 2r− 1: see [Rou91]. The latter allowed
the conjecture to be verified for rank at most 5: see [Ram99, HOKMS23]. The largest
class of unbounded rank known to satisfy the conjecture is Lawrence matroids, shown
by Montejano and Ramı́rez-Alfonśın [MR15]. Furthermore, in [BBLP95] it is shown that
for realizable oriented matroids of rank r on n elements, the number of complete cells
is 2(nr−3) + O(nr−4), and so Roudneff’s conjecture holds asymptotically for realizable
oriented matroids.

Another open problem on complete cells is attributed to McMullen in [Lar72] for
the largest integer ν(r) such that that every uniform oriented matoids of rank r and
ν(r) elements has a complete cell. The lower bound of 2r − 1 ⩽ ν(r) has been shown
first for realizable oriented matroids in [Lar72] and then for general uniform oriented
matroids [CdS85]. The common belief seems to be that this is tight. This has been
shown for r ⩽ 5 [FLVS01], but remains open otherwise. After a series of results [Lar72,
LV86a], the currently best-known upper bound ν(r) < 2(r − 1) +

⌈
r
2

⌉
is due to Ramı́rez

Alfonśın [Ram01].
A complete cell is analogous to a convex polytope, and this point of view connects

complete cells to k-neighborly oriented matroids: see [HOKM23,Stu88a].

The tope graph To every simple oriented matroid M one can associate its tope graph,
which is the subgraph of the hypercube QE on {+,−}E induced by the topes. It deter-
mines M uniquely up to isomorphism and therefore is an alternative point of view for the
study of oriented matroids. The tope graph is a partial cube, i.e., an isometric subgraph of
QE which by symmetry furthermore has a property called antipodality. This creates an im-
portant link to metric graph theory, in which partial cubes form one of the central classes.
While in rank at most 3 tope graphs coincide with planar antipodal partial cubes [FH93],
in general not all the antipodal partial cubes, a.k.a., acycloids, are tope graphs of oriented
matroids. This has been known since Handa’s work [Han87,Han93], and the question for
a purely graph theoretical characterization of tope graphs [Han93, Problem 2] that can
furthermore be verified in polynomial time [Fuk04, Problem 1.2] was around for a while.
This has been accomplished in [KM20] and may be viewed as identifying the theory of
oriented matroids with a part of metric graph theory. In particular many of the above
problems can be conveniently stated in terms of tope graphs, and it will be exciting to
see if tools from metric graph theory may shed light on longstanding questions.

3.7.2 Cocircuits

Problems on point configurations can generalize to problems on cocircuits in oriented
matroids. As a charming example, we have the following: A natural open problem in
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oriented matroids is to find a generalization of the Sylvester-Gallai Theorem: for every
set of points in the plane that does not lie on a single line there is a line that contains
only two of the points. The question of how many such lines exist is the subject of con-
jectures of Dirac-Motzkin and Grünbaum and has been answered for large n by Green
and Tao [GT13]. The theorem generalizes to oriented matroid of rank 3, where the quan-
titative question remains open [CS93]. Works of Hansen [Han65] and Shannon [Sha79]
generalize the Sylvester-Gallai Theorem to realizable oriented matroids. Mandel pushed
this further to oriented matroids with a general-position extension to a Euclidean ori-
ented matroid [Man82]. The conjecture that the theorem holds for all oriented matroids
is attributed to Murty by Mandel, who shows it to be equivalent to the statement that
every orientable matroid has a disconnected hyperplane.

The cocircuit graph of an oriented matroid M can be interpreted as the 1-skeleton
of the pseudosphere arrangement representing M . In contrast to the tope graph, the
cocircuit graph does not uniquely determine an oriented matroid. Indeed, it does not even
determine the number of nonloops of the oriented matroid [CFGdO00]. It is even unknown
whether the cocircuit graph determines the rank of M . In contrast to tope graphs, no
purely graph theoretic characterization is known for cocircuit graphs: see [KMBJJ14] for
some ideas for sign-labeled graphs. Also, a polynomial time recognition algorithm is only
available for the uniform case [FGK+11,BFF01].

The oldest and most famous question in this context is whether the diameter of the
cocircuit graph of an oriented matroid with n elements and rank r is bounded by n−r+2.
This is known to hold for r ⩽ 3 [FGK+11, BFF01], where it also has been related to the
Hirsch conjecture. The survey article [ADLKZ21] reduced the above problem to the
uniform case and answered the question affirmatively for n ⩽ 9. Indeed, while it is easy
to see that the diameter of a cocircuit graph is O(rn), a weaker question due to Fukuda
asks whether the diameter of the cocircuit graph of an oriented matroid on n elements in
O(n) (independently of the rank).

3.8 Beyond oriented matroids

3.8.1 Complexes of oriented matroids

Where oriented matroids are abstractions of central hyperplane arrangements, complexes
of oriented matroids, a.k.a. conditional oriented matroids (COMs), abstract intersections
of arbitrary affine hyperplane arrangements with open polyhedra. In this realizable setting
they appear for instance in neural codes [KLR23,IKR20] and in relation to the Varchenko-
Gel’fand ring [DB23]. They were introduced by Bandelt, Chepoi, and Knauer [BCK18].
COMs capture several objects beyond oriented matroids, e.g., distributive latices and
more generally median graphs a.k.a skeleta of CAT(0)-cube complexes [BC08, Gro87],
linear extension graphs of posets [FM11, Naa00], and convex (semi)geometries [ES88]
a.k.a (conditional) antimatroids [BCDK06, JW80]. The covector axioms of COMs are
a relaxation of the oriented matroid covector axioms and make it clear that oriented
matoids, affine oriented matroids, and lopsided sets a.k.a. ample systems [Law83] all find
a common generalization in COMs. Other objects that can be expressed as COMs include
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CAT(0)-Coxeter zonotopal complexes [HP98], Pasch and hypercellular graphs [CKM20].
Many fundamental notions such as minors, topes and tope graphs generalize to COMs,

but also deeper results extend from oriented matroids to COMs, e.g., the factorization
of the Varchenko determinant [HW19, HKK22, Ran21] and the characterization of tope
graphs [KM20].

Some of the fundamental open problems for COMs are:

• COMs from oriented matroids: while any restriction [KM20] (a.k.a. super-
tope [HW19] a.k.a topal fiber [BCK18]) of an oriented matroid is a COM, it is
open whether the converse holds. This is only known for affine oriented ma-
troids which have an intrinsic axiomatization [BZ18] but has been conjectured
in [BCK18, KM20, HKK22]. This is perhaps the central conjecture in the area,
since it would yield many oriented matroid properties for COMs, e.g., a Topological
Representation Theorem with pseudospheres and open pseudohemispheres.

• weak maps: a generalization of the fact that every oriented matroid is a weak
map image of a uniform oriented matroid of the same rank has been conjectured
in [CKP22], where the role of uniform oriented matroids is played by lopsided sets.

• duality: while lopsided sets as well as oriented matoids admit the notion of duality,
for COMs no such notion is known, although definitions of circuits [DBPW22] and
cocircuits [BCK18] have been proposed.

• underlying unoriented theory: while oriented matroids [Oxl92] and affine ori-
ented matroids [Ard07] admit an underlying unoriented theory of (ordinary) ma-
troids and semimatoids, no such class is known for COMs. A candidate is given by
bouquets of matroids [CL89a,DL87,LD89].

• sample compression: through their topes COMs can be interpreted as set sys-
tems, and from this point of view they have been shown to satisfy the labeled sample
compression conjecture [CKP23], one of the fundamental open problems in Compu-
tational Learning Theory: see [RR12] for more information. The stronger unlabeled
version of the conjecture has been shown for oriented matroids and COMs admitting
a corner peeling [Mar22].

• beyond COMs: COMs have been featured as perhaps the example of CW left
regular bands in a work of Margolis, Saliola, and Steinberg [MSS21]. Other examples
include the complex oriented matroids of Björner and Ziegler [Zie93b, BZ92]. As a
consequence natural Markov chains such as the Tstetlin library can be generalized
and analyzed as well as Euler formulas can be obtained. What properties of COMs
can be extended to CW left regular bands?

3.8.2 Matroids over partial hyperstructures

Oriented matroids constitute one example of a theory of matroids with extra structure.
Various attempts at other examples have been made over the years: a key difficulty in
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developing such a theory lies in finding suitable notions of duality and cryptomorphisms.
Among the theories that succeeded at this to some extent are:

• matroids over fuzzy rings, see [Dre86b], [DW91], [DW92a]),

• valuated matroids [DW92b], [MS15], and

• phased matroids (also called phirotopes [BKRG03] and complex matroids [AD12]).

In 2016 Baker and Bowler generalized all of the above examples, as well as matroids and
oriented matroids, into a comprehensive theory of matroids over partial hyperstructures
[BB16], [BB19]. For an introduction, see [Bak17]. Some key examples:

• A field is a partial hyperstructure, and a rank r matroid over a field F on elements
[n] is a rank r subspace of F n.

• The sign hyperfield S = {0,+,−} is a partial hyperstructure, and a matroid over S
is an oriented matroid.

• The Krasner hyperfield K = {0, ̸= 0} is a partial hyperstructure, and a matroid over
K is an ordinary matroid.

A particularly intriguing aspect of the theory is its formulation of realizability. A
morphism ρ : H → H ′ of partial hyperstructures induces a map ρ̂ from matroids over H
to matroids over H ′. In particular,

• when H is a field and H ′ = K then the preimage under ρ̂ of a matroid is its set of
vector space realizations over H,

• when H = S and H ′ = K then the preimage under ρ̂ of a matroid is its set of
orientations, and

• when H = R and H ′ = S then the preimage under ρ̂ of an oriented matroid is its
realization space.

The foundation of a matroid M [BL] is a partial hyperstructure canonically associated to
M that classifies representations of M over general hyperstructures. Baker and Lorscheid
gave a presentation of the foundation of a matroid in terms of generators and relations,
building on work of Tutte, Dress-Wenzel, and Gelfand-Rybnikov-Stone, which they used
to prove results on realizations of matroids without large uniform minors. There is much
room for further exploration of foundations.

Many of the questions on Grassmannians and flag spaces in Section 3.3 generalize to
matroids over a partial hyperstructure with a compatible topology. A framework for this,
with many open questions, is laid out in [AD19].
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4 Some Additions and Corrections.

In this section, we collect some notes, additions, corrections and updates to the 1993
book by Björner, Las Vergnas, Sturmfels, White & Ziegler [BLVS+99]. The list is far
from complete (even in view of the points that we know about), and with your help we
plan to expand it in the future.

Page 144, proof of Theorem 3.7.5

The reference to Proposition 3.7.3 should be to Proposition 3.7.2.

Page 148, Proposition 3.8.2

This result is actually due to da Silva ( [dS87a], Chapter 6, Theorem 1).

Page 150, Section 3.9 “Historical Sketch”

Jaritz [Jar96, Jar97] gives a new axiomatic of oriented matroids in terms of “order
functions” whose axioms and concepts she traces back to Sperner [Spe49] (1949!),
Karzel [Kar69] etc. At the same time, Kalhoff [Kal00] reduces embedding questions
about pseudoline arrangements, as solved by Goodman, Pollack, Wenger & Zamfirescu
[JEGZ94,GPWZ96], back to 1967 results of Prieß-Crampe [PC67].

All this gets us closer to confirming the suspicion that probably Hilbert knew about
oriented matroids. . .

Page 176

the same for a contraction that need not be simple. should be the same for a contraction,
which need not be simple.

Page 176, proof of Proposition 4.3.1

There’s a minor error in the proof. At the top of Page 176 the oriented matroid is assumed
to be simple. Further down, in the argument (ii), an inductive argument assumes the
same for a contraction that need not be simple. Perhaps the simplest fix is to drop the
assumption of simplicity and talk about parallelism classes of nonloops rather than about
elements.

Page 220, Exercise 4.28∗.

Part (a) of this was already proved by Zaslavsky [Zas75b, Sect. 9]. However, part (b)
remains open and should be an interesting challenge.

Page 227, Definition 5.1.3.

For condition (A2), if SA ∩ Se = S−1 = ∅ is the empty sphere in a zero sphere SA
∼= S0,

then the sides of this empty sphere are the two points of SA.
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Page 244, Exercise 5.2(c).

Hochstättler [Hoc95] has shown that quite general arrangements of wild spheres also yield
oriented matroids.

Page 270, Proposition 6.5.1.

Felsner [Fel97] has constructed a new and especially effective encoding scheme for wiring
diagrams, which implies improved upper bound for the number of wiring diagrams and
hence of simple pseudoline arrangements, namely

log2 sn < 0.6988n2.

Page 275:

Richter-Gebert [RG99] has proved (in 1996, and written up in 1998) that orientability is
NP-complete [RG99]. (It’s a beautiful paper!)

Page 279, Exercises 6.21(a)(∗)

The answer is “yes”: this problem was solved in 1997, with an explicit construction, by
Forge & Ramı́rez Alfonśın [FA98].

Page 289, proof of Theorem 7.1.8

The reference should be to Theorem 3.6.1*.

Page 295

, talking about a lexicographic extension p = [ea11 , . . . , eakk ], it says that e1 and p are
inseparable, covariant if a1 = + and contravariant if a1 = −. The last sentence must be
contravariant if a1 = + and covariant if a1 = −. Since a1 = + means that p and a1 have
the same sign in all cocircuits, and hence opposite in all circuits.

Page 334, Exercises 7.15(b)(∗) and 7.17.

An explicit example of an oriented matroid that has a simple adjoint, but not a double
adjoint was constructed by Hochstättler & Kromberg [HK96b,Kro95].

Also, they observed [HK96a, Kro95] that some assertions in Exercise 7.17 are not
correct: Jürgen Richter-Gebert’s [RG91, p. 117] 8-point torus is realizable over an ordered
skew field, but not over R. Therefore the oriented matroid given by such a skew realization
has an infinite sequence of adjoints, but it is not realizable in R4.

Page 337, Exercises 7.44*.

No one seems to remember the example: so consider this to be an open problem. (The
non-existence of such an example is also discussed, as a Conjecture of Brylawski, in
McNulty [McN94].)
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Page 385, McMullen’s problem on projective transformations.

Forge, Schuchert, and Las Vergnas [FLVS01] have found a configuration of 10 points in
general position in affine 4-space that no projective transformation can put into convex
position. This solves McMullen’s problem for d = 4 resp. r = 5 with f(4) = g(5) = 9.

This is consistent with the conjecture that the inequalities 2d + 1 ⩽ g(d + 1) ⩽ f(d)
[sic.!] hold with equality also for d > 4.

Page 396.

Proposition 9.4.2 is true only for n ⩾ r+2. For n = r+1 the matroid is one single circuit,
the inseparability graph is a complete graph, etc.

Page 405 (top).

It is not true that the sphere S = M9
963 is neighborly: the edges 13 and 24 are missing

(in the labeling used in [BLVS+99]). Thus Shemer’s Theorem 9.4.13 cannot be applied
here. A proof that the sphere admits at most one matroid polytope, AB(9), was given by
Bokowski [Bok] in 1978 (see also Altshuler, Bokowski & Steinberg [ABS80] and Antonin
[Ant82]). It is described in detail in Bokowski & Schuchert [BS95a]. (The oriented matroid
RS(8) discussed in [BLVS+99, Sect. 1.5] arises as a contraction of the oriented matroid
AB(9).)

Page 413, Exercise 9.12(∗).

Bokowski & Schuchert [BS95a] showed that the smallest example (both in terms of its
rank r = 5 and in terms of its number of vertices n = 9), is given by Altshuler’s sphere
M9

963.

Page 424.

In Definition 10.1.8, delete “infeasible oriented matroid program” resp. “unbounded ori-
ented matroid program.”

After this, the cocircuit Y should be Y = (00+++|+−), the circuit X should be
X = (0+00+|−+), and the circuit X0 should be X0 = (000++|−+)

Page 426, Proof of Corollary 10.1.10.

“Orthogonality of circuits and cocircuits”

Page 481, Definition A.1.1

As noted in Section 3.1 here, there’s an omission in this definition.
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Math. Soc. János Bolyai, pages 105–116. North-Holland, Amsterdam,
1987.

[BB90] G. Blind and R. Blind. Convex polytopes without triangular faces. Israel
J. Math., 71:129–134, 1990.

[BB16] M. Baker and N. Bowler. Matroids over hyperfields, 2016.
arXiv:1601.01204.

[BB19] M. Baker and N. Bowler. Matroids over partial hyperstructures. Ad-
vances in Mathematics, 343:821–863, 2019.

[BBD98] L. Billera, K. S. Brown, and P. Diaconis. Geometry and probability in
three dimensions, 1998. Preprint, Cornell, 23 pages.
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(Curaçao, 1994), pages 167–196. Kluwer Acad. Publ., Dordrecht, 1995.

[CRHS94] M.-F. Coste-Roy, J. Heintz, and P. Solerno. Description of the connected
components of a semialgebraic set in single exponential time. Discrete
Comput. Geometry, 11:121–140, 1994.

[CS87] R. Cordovil and I. P. Silva. Determining a matroid polytope by non-
Radon partitions. Linear Algebra Appl., 94:55–60, 1987.

[CS93] J. Csima and E. T. Sawyer. There exist 6n/13 ordinary points. Discrete
Comput. Geom., 9(2):187–202, 1993.

[CS97] H. Crapo and M. Senechal. Tilings by related zonotopes. Math. Comput.
Modelling, 26(8-10):59–73, 1997. Combinatorics and physics (Marseilles,
1995).

[CS17] F. Criado and F. Santos. The maximum diameter of pure simplicial
complexes and pseudo-manifolds. Discrete Comput. Geom., 58(3):643–
649, 2017.

[CYZ08] B. Chen, A. L. B. Yang, and T. Y. J. Zhang. A bijection for
Eulerian-equivalence classes of totally cyclic orientations. Graphs Comb.,
24(6):519–530, 2008.

[Dan63] G. B. Dantzig. Linear programming and extensions. Princeton Univer-
sity Press, Princeton, N.J., 1963.

[Dav86] R. J. Daverman. Decompositions of manifolds, volume 124 of Pure and
Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.

the electronic journal of combinatorics (2024), #DS4 36



[DB23] G. Dorpalen-Barry. The Varchenko-Gel’fand ring of a cone. J. Algebra,
617:500–521, 2023.

[DBPW22] G. Dorpalen-Barry, N. Proudfoot, and J. Wang. Equivariant cohomology
and conditional oriented matroids. arXiv:2208.04855, 2022.

[DDH82] A. Dreiding, A. W. M. Dress, and H. Haegi. Classification of mobile
molecules by category theory. Studies in Physical and Theoretical Chem-
istry, 23:39–58, 1982.

[Del72] P. Deligne. Les immeubles des groupes de tresses généralisés. Inventiones
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Birkhäuser, Basel-Boston, Mass., 1979.

[Eln93] S. Elnitsky. Rhombic tilings of polygons and classes of reduced words in
Coxeter groups. ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–
University of Michigan.

[Eln97] S. Elnitzky. Rhombic tilings of polygons and classes of reduced words
in Coxeter groups. J. Combinatorial Theory Ser. A, 77:193–221, 1997.

[EM78] J. Edmonds and A. Mandel. Topology of oriented matroids, 1978. Ab-
stract 758-05-9, A-510.
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[EP95] P. Erdős and G. Purdy. Extremal problems in combinatorial geometry.
In Handbook of Combinatorics, Vol. 1, 2, pages 809–874. Elsevier Sci.
B. V., Amsterdam, 1995.

[ER96a] P. H. Edelman and V. Reiner. Free arrangements and rhombic tilings.
Discrete Comput. Geometry, 15:307–340, 1996.

[ER96b] P. H. Edelman and V. Reiner. The higher Stasheff-Tamari posets. Math-
ematika, 43:127–154, 1996.

[ER97] P. H. Edelman and V. Reiner. Erratum to: “Free arrangements and
rhombic tilings” [Discrete Comput. Geom. 15 (1996), no. 3, 307–340;
MR1380397 (97f:52019)]. Discrete Comput. Geom., 17(3):359, 1997.

the electronic journal of combinatorics (2024), #DS4 39



[ERR00] P. H. Edelman, J. Rambau, and V. Reiner. On subdivision posets of
cyclic polytopes. European J. Combin., 21:85–101, 2000. Combinatorics
of polytopes.
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cyclic arrangements. European Journal of Combinatorics, 22(3):307–
312, 2001.

[FST91] K. Fukuda, S. Saito, and A. Tamura. Combinatorial face enumeration in
arrangements and oriented matroids. Discrete Appl. Math., 31:141–149,
1991.

[FSTT91] K. Fukuda, S. Saito, A. Tamura, and T. Tokuyama. Bounding the
number of k-faces in arrangements of hyperplanes. Discrete Appl. Math.,
31:151–165, 1991.

[FT88a] K. Fukuda and A. Tamura. Local deformation and orientation transfor-
mation in oriented matroids. Ars Combinatoria, 25A:243–258, 1988.

[FT88b] K. Fukuda and A. Tamura. Local deformation and orientation trans-
formation in oriented matroids ii, 1988. preprint, Research Reports on
Information Sciences B-212, Tokyo Institute of Technology 22 pages.

the electronic journal of combinatorics (2024), #DS4 41



[FT89] K. Fukuda and A. Tamura. Characterizations of ∗-families. J. Combi-
natorial Theory, Ser. B, 47:107–110, 1989.

[FT90] K. Fukuda and A. Tamura. Dualities in signed vector spaces. Portugaliae
Mathematica, 47:151–165, 1990.

[FT92] K. Fukuda and T. Terlaky. Linear complementarity and oriented ma-
troids. J. Operations Research Society of Japan, 35:45–61, 1992.

[FTT93] K. Fukuda, A. Tamura, and T. Tokuyama. A theorem on the aver-
age number of subfaces in arrangements and oriented matroids. Geom.
Dedicata, 47:129–142, 1993.

[Fuk82] K. Fukuda. Oriented matroid programming. ProQuest LLC, Ann Arbor,
MI, 1982. Thesis (Ph.D.)–University of Waterloo (Canada).

[Fuk86] K. Fukuda. Oriented matroids and linear programming. In Proceedings
of the 15th Symposium of the Operations Research Society of Japan,
pages 8–14, 1986. in Japanese.

[Fuk04] K. Fukuda. Lecture Notes on Oriented Matroids and Geometric Com-
putation. ETH Zürich, 2004.
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[Kah87] J. Kahn. On lattices with Möbius function ±1, 0. Discrete Comput. Ge-
ometry, 2:1–8, 1987.

[Kal88a] G. Kalai. Many triangulated spheres. Discrete Comput. Geometry, 3:1–
14, 1988.

[Kal88b] G. Kalai. A simple way to tell a simple polytope from its graph. J. Com-
binatorial Theory Ser. A, 49:381–383, 1988.

[Kal00] F. B. Kalhoff. Oriented rank three matroids and projective planes. Eu-
ropean J. Combin., 21(3):347–365, 2000.

[Kar68] S. Karlin. Total positivity. Vol. I. Stanford University Press, Stanford,
Calif., 1968.

[Kar69] H. Karzel. Konvexität in halbgeordneten projektiven und affinen
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[Kle76b] P. Kleinschmidt. Sphären mit wenigen ecken. Geometriae Dedicata,
5:307–320, 1976.

[KLR23] A. B. Kunin, C. Lienkaemper, and Z. Rosen. Oriented matroids and
combinatorial neural codes. Comb. Theory, 3(1):39, 2023. Id/No 14.

[KM58] L. M. Kelly and W. O. J. Moser. On the number of ordinary lines
determined by n points. Canadian J. Math., 10:210–219, 1958.

[KM95] M. Kapovich and J. J. Millson. On the moduli space of polygons in the
euclidean plane. J. Differential Geometry, 42:430–464, 1995.

[KM96] M. Kapovich and J. J. Millson. The symplectic geometry of polygons in
euclidean space. J. Differential Geometry, 44:479–513, 1996.

[KM99] M. Kapovich and J. J. Millson. On the moduli space of a spherical
polygonal linkage. Canad. Math. Bull., 42(3):307–320, 1999.

[KM02] M. Kapovich and J. J. Millson. Universality theorems for configuration
spaces of planar linkages. Topology, 41(6):1051–1107, 2002.

[KM20] K. Knauer and T. Marc. On tope graphs of complexes of oriented ma-
troids. Discrete Comput. Geom., 63(2):377–417, 2020.

[KM23a] K. Knauer and T. Marc. Corners and simpliciality in oriented matroids
and partial cubes. European Journal of Combinatorics, 112:103714,
2023.

[KM23b] K. Knauer and T. Marc. Corners and simpliciality in oriented matroids
and partial cubes. European Journal of Combinatorics, 112:103714,
2023.

[KMBJJ14] K. Knauer, Montellano-Ballesteros, and R. Juan José, Strausz. A graph-
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[SW89] B. Sturmfels and N. White. Gröbner bases and invariant theory. Ad-
vances in Math., 76:245–259, 1989.

the electronic journal of combinatorics (2024), #DS4 67



[SW96] C. Semple and G. Whittle. Partial fields and matroid representation.
Adv. in Appl. Math., 17(2):184–208, 1996.

[SZ93] B. Sturmfels and G. M. Ziegler. Extension spaces of oriented matroids.
Discrete Comput. Geometry, 10:23–45, 1993.

[Tar51] A. Tarski. Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 2nd revised edition, 1951.

[Ter80] H. Terao. Arrangements of hyperplanes and their freeness i, ii. J. Fac.
Science Univ. Tokyo, Sci. IA, 27:293–320, 1980.

[Ter81] H. Terao. Generalized exponents of a free arrangement of hyperplanes
and shephard-todd-brieskorn formula. Inventiones Math., 63:159–179,
1981.

[Ter85a] T. Terlaky. The criss-cross method and its applications. PhD thesis,
Hungarian Academy of Sciences, Budapest, 1985.

[Ter85b] T. Terlaky. A finite criss-cross method for oriented matroids. Alkalma-
zott Mat. Lapok, 11:385–398, 1985.

[Ter87] T. Terlaky. A finite criss-cross method for oriented matroids. J. Com-
binatorial Theory Ser. B, 42:319–327, 1987.

[TGO17] C. D. Toth, J. E. Goodman, and J. O’Rourke, editors. Handbook of dis-
crete and computational geometry. Discrete Math. Appl. (Boca Raton).
Boca Raton, FL: CRC Press, 3rd revised and updated edition edition,
2017.

[TH04] H. Tracy Hall. Counterexamples in Discrete Geometry. PhD Thesis,
University Of California, Berkeley, 2004.

[Tho10] C. Thomassen. Spanning trees and orientation of graphs. J. Comb.,
1(2):101–111, 2010.

[Tit68] J. Tits. Le problème des mots dans les groupes de Coxeter. Ist Naz.
Alta Math. & Symposia Math., 1:175–185, 1968.

[Tit74] J. Tits. Buildings of spherical type and finite BN-pairs, volume 386 of
Lecture Notes in Mathematics. Springer, 1974.

[Tit82] J. Tits. A local approach to buildings. In C. Davis, B. Grünbaum, and
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